
Exploring Techniques for Addressing Long-Range Interactions in Graph Neural 

Networks: A Comparative Study of Positional Encoding, Edge Creation, and Attention 

Yichi Zhang, Brandon Liu 

 

ABSTRACT 

In this paper, we apply a set of transformer-based techniques to various Graph Neural 

Network (GNN) architectures and evaluate their effectiveness in capturing long-range 

interactions in the graph. Our proposed methods encompass positional encoding, edge 

creation, and graph attention and we examined for their performances both cooperatively and 

comparatively. These methods aim to address the limitations of long-range interactions 

between nodes in the graph structure, which can affect the quality of results obtained by GNN 

models. Our results suggest that while the effectiveness of each technique depends on the 

specific dataset and task, a joint application of transformer-based methods can significantly 

improve GNN models' ability to capture long-range interactions. 

 

1 INTRODUCTION 

The Graph Neural Network (GNN) is a deep learning architecture designed for learning 

graph-structured data, which uses nodes and edges to represent information. Compared to 

tabular data, the graph data are usually characterized by its lack of sequential orders, thus 

resulting in challenges to apply common deep learning techniques on them. The standard 

approach for processing GNNs is to perform message passing between directly connected 

nodes, and via repetitively aggregating features through neighbouring nodes and edges, the 

information could diffuse from further away throughout the graph.  



While GNNs are generally capable of propagating information and capture the relationships 

between nodes, they can struggle to effectively capture long-range interactions in large 

graphs. Ideally, a GNN of N layers can aggregate information from nodes N steps away. 

However, as the number of nodes grows larger, the number of steps to traverse and the 

amount of information to be encoded into one vector increase exponentially. Another concern 

is that a considerable amount of the information can be lost during the message passing 

process, typically at nodes with few connected edges where the information are more 

compressed. This issue is known as the oversquashing issue((Alon and Yahav, 2020) and 

remains as one of the most common optimization issues for GNNs. Many previous works 

have tried to address the long-range interactions by proposing new types of GNN operations, 

such as positional encoding, graph attention and adding additional edges at “bottleneck” 

nodes, while each approach results in additional computational costs. This can make it 

difficult to train GNNs on very large graphs and to scale them to real-world applications.  

In this paper, we explored behaviors of different constructions for capturing interactions in 

long-range graphs. The datasets we used include Pascal-VOC-SP, Peptides-func and 

Princeton Shape Benchmark(PSB), with first two come from the Long Range Graph 

Benchmark(LRGB) collections(Dwivedi et al., 2022) and the latter one being a standardized 

dataset for testing shape matches(Shilane, Philip, et al., 2004). While the ordinary practices of 

the GNN do not necessarily require distinguishing long-ranged graph dependencies, the 

benchmark datasets are believed to demand such identification to achieve a satisfying 

performance, which makes them ideal for the context of this paper. We’ve excerpted a table 

from the original dataset overview to demonstrate the scope of the work (Table 1). Among the 

two datasets, PascalVOC-SP deal with node-level superpixel predictions and uses the marco 

F1 score as the performance metric. On the other hand, the task of Peptide-func PSB datasets 



are to determine the category of the graph based on its global-level structure, and the average 

precision or mean average precision scores are used to evaluate the model performance.  

Dataset Task Num of Graphs Avg Num of 

Nodes 

Metric 

PascalVOC-SP Node Prediction 11355 479.40 macro F1 

Peptides-func Graph 

Classification 

15535 150.94 Average 

Precision 

PSB Graph 

Classification 

2326 4436.61 mean Average 

Precision 

Table 1.  Scales and Tasks for Benchmark Datasets 

 

 

2 METHOD SUMMARY 

2.1 Datasets and Types of Tasks 

We used the cross entropy as the loss function for both node prediction and graph 

classification task. And for node prediction task specifically we tuned the cross entropy to 

also incorporate class weights to address the fact that the PascalVOC-Sp dataset contains 

60~70% of 0 label for each graph which constitutes to a unbalanced label distribution. 

Therefore, we wish to re-weight the loss function to prevent overwhelming false negative 

predictions. The seemingly low f1 score also reflected the imbalanced nature of this dataset.  

Apart from PascalVOC-SP and Peptides-func which are well-organized dataset dedicated to 

graph data testing, we also employed the Princeton Shape Benchmark dataset, a standardized 

dataset for 3d model shape recognition, as a typical custom dataset from other domain to 



testify our methods. The primitive PSB dataset store data in the format of .off files rather than 

graph data. The format represents a mesh composed of vertices, edges, and faces. The file 

begins with a header line specifying the number of vertices, edges, and faces, and is 

commonly used for representing 3D models in computer graphics. By parsing the vertices 

and faces into nodes and shape edges to graph edges, we can easily create a transformed PSB 

dataset for graph data. While the original PSB uses hierarchy categorization classes, e.g. 

“aircraft/airplane/F117”, in this experiment we would only uses the first hierarchy as the 

“super class” for the categorization task, as the nature of this experiment is not to test 

classification algorithm, but to investigate the long-rage graph interactions.  

For graph-level classification, the nature of the task reveals a loosing demand on controlling 

class weight, and adding node-wise weight does not produce a visible influence on the result. 

Therefore, we used the generic cross entropy loss for evaluating graph-level tasks. To get the 

graph-level representation, we applied a mean pooling layer to aggregate node features from 

the graph, followed a 3-layer MLP classifier for the final classification. Since the goal of this 

project is to evaluate the graph neural network performance comparatively, the MLPs are not 

fine-tuned individually for different GNN structures in addition to the standard training 

workflow.  

 

2.2 GCN Models  

We would test our transformer-based approach across some of the most widely used GNN 

architectures, which are Graph Convolutional Network (GCN), Graph Isomorphism Network 

(GIN), Graph Attention Network (GAT), gated Graph Convolutional Network (GatedGCN), 

and Spectral Attention Network (SAN). While the focus of this paper is transformer-based 

methods for GNNs, understanding the overview of the used GNN model pipelines is also 



important for contextualizing the transformer-based approaches. A GNN model typically 

consists of several key components, such as graph convolutional layers, attention 

mechanisms, and gating mechanisms. These components can be modified and combined in 

different ways to create different GNN models, including GCN, GIN, GAT, gatedGCN, and 

SAN. 

In traditional GCN models, information is passed between neighboring nodes through 

message propagation, which limits the model's ability to capture dependencies among distant 

nodes. However, by incorporating transformer-based approaches, the GCN models can 

aggregate information from a much larger range of nodes, thus improving their ability to 

capture long-range interactions. By understanding the components and architecture of these 

GNN models, we can better appreciate the specific challenges that arise in capturing long-

range dependencies, which is the focus of transformer-based methods. Additionally, many of 

the transformer-based approaches build on existing GNN models or utilize similar 

components, so understanding the GNN pipeline is essential for understanding how 

transformer-based methods improve upon these existing models.  

GCN 

The Graph Convolutional network follows the path 

𝐻(𝑘) = 𝑅𝑒𝐿𝑢(𝑊(𝑘)𝐻(𝑘−1)𝑄𝐺𝐶𝑁), 

where 𝑄𝐺𝐶𝑁 = 𝐷−
1

2(𝐴 + 𝐼)𝐷−
1

2  marks the graph Laplacian and 𝑊(𝑘) denotes the trainable 

parameters in the layer. Innately a spectral method, GCN is characterized by its inclination to 

local features. In GCN, each node aggregates information from its neighbours through a 

linear transformation followed by a nonlinear activation function, resulting in a new 

representation for the node. The final representation of each node is obtained by combining 



its original representation with its aggregated representation from the neighbours(Kipf and 

Welling, 2019). 

GIN 

The Graph Isomorphism Network (GIN) takes the form 

𝐻(𝑘) = 𝑀𝐿𝑃(𝑘)(𝑊(𝑘)𝐻(𝑘−1)𝑄𝐺𝐶𝑁), 

using a multiplayer perceptron for mapping the features (Xu et al., 2019), improved from 

GCN architectures. Unlike GCN, GIN can handle graph isomorphism, which means it can 

recognize that two different graphs are actually the same in structure. GIN uses a learnable 

multi-layer perceptron (MLP) to aggregate information from neighbors, and applies the same 

MLP to each node in the graph.  

GAT 

The Graph Attention Networks operates the pair-wise attention scores to weight the 

importance of neighbors during message passing(Brody et al., 2021). It computes attention 

coefficients between pairs of nodes using a learnable function and uses these coefficients to 

weight the hidden representations of the neighbors during aggregation. The GAT is suited for 

our experiment because it relies on the attention mechanism locally without the spectral 

method. The addition of other transformer-based approaches such as positional encoding and 

edge creating are expected to enhance its expressiveness. Moreover, we can contrast the 

transformer-incorporated performance of GAT to those of GCN and GIN to investigate how 

does attention mechanism compares to other transformer-based methods. 

GatedGCN 

GatedGCN is a variation of GCN that uses gated recurrent units to model temporal 

dependencies during message passing(Li, Yujia, et al, 2015). It computes the hidden 



representation of each node by combining its previous hidden representation with its current 

aggregated representation from the neighbors. GatedGCN can effectively model the temporal 

dynamics of graphs and has shown strong performance on various graph-related tasks. 

SAN 

The Spectral Attention Network (Kreuzer et al. 2021) applies a positional encoding to the 

graph data through the whole Laplacian spectrum and passes the positional encoding to a all-

connected Transformer layer alongside node features. SAN also uses a learnable Laplacian 

positional encoding scheme to encode the structural information of the graph. SAN has 

shown strong performance on the benchmark datasets and can effectively capture long-range 

dependencies in graphs. 

 

2.3 Transformer-based Approaches 

In our experiments, we examined the use of positional encoding, edge creation, and graph 

attention techniques, both independently and in combination. We will evaluate the 

performance of these approaches on the PascalVOC-SP and Peptide-func PSB datasets, using 

the macro F1 score and average precision score as the evaluation metrics, respectively. Our 

results show that a joint application of these transformer-based techniques can significantly 

enhance GNN performance in capturing long-range interactions on graphs. 

Some of the GNN architectures that we used for testing have a built-in implementation of 

transformers, for instance, in SAN Laplacian positional encoding and full graph attention are 

used. In this case, we’d modified the existing implementation instead of adding new layers of 

transformers. We did not, however, modify the baseline model for each model type for the 

purpose of comparisons.  



 

Positional Encoding 

We use Laplacian positional encoding and random walk encoding as the two approaches for 

incorporating graph structure information into the node embeddings in graph neural 

networks. 

Positional encoding injects the relative position of nodes into the node features, which can be 

generated using the Laplacian matrix of a graph. Given the Laplacian matrix L = D - A, 

where D is the diagonal matrix of node degrees and A is the adjacency matrix, we can 

calculate the eigenvectors from it. The Laplacian eigenvectors can then be normalized and 

concatenated to for a vector representation for each node in the graph. Positional encoding 

can provide additional information about the global structure of the graph through local node 

features, allowing most GNNs to handle irregular graph structures. 

Random walk encoding, on the other hand, is based on the idea of simulating random walks 

on the graph and using the resulting probabilities to encode information about the local and 

global structure of the graph. Specifically, for each node in the graph, the random walk 

positional encoding generates a vector of probabilities that correspond to the likelihood of the 

node being reached by random walks of various lengths starting from every other node in the 

graph. These probability vectors are then used as additional features for each node in the 

GNN. 

Positional Encoding can be added to existing GNN architecture with minimal modifications 

and does affect the number of trainable parameters which otherwise could increase the 

training complexity. The process of positional encoding itself, however, demands heavy 

computations. Thus, one of the goals in our experiment is to test whether it is efficient to add 

positional encoding above other shortcut approaches.  



 

Edge Creation 

The oversuqashing issue is typical for large graphs because both the frequencies of bottleneck 

cases and the overall distance between node increase as the total number of nodes increase 

(Dwivedi et al., 2022). Adding supplemental edges can potentially decreases the level of 

information compression at certain nodes, and thus mitigating the oversquashing problem. To 

determine which node to add edges, we use the probability weight p = a / d(i,j)2 where a is a 

learnable parameter. And we use an overall dropout rate as a marginal limit to determine the 

maximal proportion of edges to be added.  

Creating new edges address the long-range interactions at the cost of increasing message 

passing computations. However, as the message passing process is one of the fundamental 

unit integrated in the current GNN code base, it’s computation is mostly optimized and 

scalable, which means it could less susceptible to the addition of computing complexity as 

compared to the previous two approaches.  

Since the number of edges to add is entirely dependent on the specific structure of a graph, 

both the effectiveness and the drawbacks of this approach can be difficult to measure. On the 

other hand, positional encoding is an approach that reduces the structure sensitivity and can 

be feasibly combined with most architectures. Therefore, we combined two approaches to test 

if any synergized effects can be produced.  

 

Graph Attention 

Graph attention is a mechanism used in GNNs to allow nodes to attend to different neighbors 

based on their importance, rather than aggregating information from all neighbors equally 



during the normal propagations. This can help to address the issue of long-range interactions 

in graphs, as it allows nodes to attend to distant neighbors that may have a greater impact on 

their representation. Throughout the experiment, we developed different approaches of 

constructing the graph attention. For choosing which node pairs to generate attention scores, 

we tried random selection(with learnable parameters) and weighted selection by distance 

using p = a / d(i,j)2 as discussed in the “Edge Creation” section.  

In graph attention, there are two main approaches for determining attention scores: global 

attention and partial attention. The choice between these two approaches will depend on the 

specific task and graph being considered, and the desired trade-off between accuracy and 

computation time. Given the scope of dataset sizes and graph sizes in our tests, global 

attention is computationally expensive. While it’s believed that the substitutes for partial 

attention might be outperformed by full graph attention, given the scope of dataset sizes and 

graph sizes in our tests, full attention is computationally expensive and is sometimes not 

affordable. Using partial attention allows a reasonably run-time mitigation, especially when 

combined with other computationally heavy transformers, while preserving the advantage of 

attention scores in storing the global structure of a graph. Hence, our primary focus is the 

partial attention.   

 

3 RESULT 

While the transformers-based methods pose additional computational cost upon models, the 

inclusion of these approaches in GNN models can significantly reduce the potential training 

time required to achieve state-of-the-art performance, which otherwise must be achieved by 

adding more layers. This is particularly important in large-scale graphs, where the number of 

nodes and edges can be prohibitively large that disallows continuing adding layers. By 



reducing the computational burden, transformer-based approaches allow for the development 

of more efficient and scalable GNN models, enabling the characterization of long-range 

interactions in even larger graphs. Table 2 to Table 4 summarizes our findings comparing the 

model which generates the best metrics to the baseline model for each model type. See 

appendix for a full collection of training result from all combinations of transformer-based 

method.  

 

3.1 Metric Performance 

Our modified transformers have enabled a significant reduction in training time for models 

compared to the previous results in LRGB. The Spectral Attention Network, which originally 

had two spectral mechanisms causing high computational burden, now requires only 1.7 

hours on average to run with improved performance over the LRGB(Dwivedi et al., 2022). 

The training time has been reduced from around 60 hours to an average of 2-3 hours. While 

it’s believed that the substitutes for partial attention might be outperformed by full graph 

attention, it allows a reasonably run-time mitigation when combing with other 

computationally heavy transformers, while preserving the advantage of attention scores in 

storing the global structure of a graph. 

In general, the experimental findings suggest that the use of additional transformers can lead 

to improved performance on all the testing datasets. The results reveal that the inclusion of 

partial graph attention to the GNN leads to a more notable enhancement in model 

performance as compared to the performance gains from the utilization of positional 

encoding and edge creation techniques solely. For PSB, the GNN shows a strong 

improvement from results of using shape descriptor functions in Shilane’s original paper, 

which ranges 0.213 for all-label classification to at best 0.416 for classifying one specific 



category (Shilane, Philip, et al., 2004). It’s expected that the addition of transformers also 

yields relatively the greatest improvements on PSB than other 2 datasets, as the PSB had 

more nodes and thus demands more handling to capture the long-range interactions. 

As the benefits of the transformer-based approaches vary depending on the specific task and 

graph being considered, we’ve also witnessed some minor discrepancies from our results. On 

the Pascal-VOC-SP dataset, for instance, the performance increase by adopting partial 

attention in replacement of full graph attention is less significant. On the other hand, for PSB 

dataset, the edge creation techniques does not improve the performance, since the PSB is a 

dataset used for 3d shape recognition and by its nature it had almost twice as much nodes 

from the Pascal and Peptides datasets, the addition of artificial edges could possibly impair 

the recognizable shape of the existing 3d meshes, revealing the circumstantial nature of this 

method.  

 Pascal-VOC-SP 

Model Metric(macro-F1) Time 

base-SAN 0.31998 4596 

edge-lap-SAN 0.333113 4646 

base-GAT 0.210278 4474 

partial-edge-walk-GAT 0.212819 6471.18 

base-GIN 0.105413 4483 

lap-GIN 0.11533 6225.81 

base-GatedGCN 0.0998135 9774.1 

lap-GatedGCN 0.103007 22086.9 



base-GCN 0.0710746 3725 

edge-lap-GatedGCN 0.105592 5435.82 

Table 2. baseline vs. best model on Pascal-VOC-SP. For abbreviation: “base” stands for 

baseline models, “edge” stands for edge creation, “lap” stands for Laplacian positional 

encoding, “walk” stands for Random Walk Positional Encoding and “partial” stands for the 

partial graph attention. 

 

 Peptide-func 

Model Metric(AP) Time 

base-SAN 0.713322 3923 

edge-walk-SAN 0.781493 6353.2 

base-GAT 0.567336 3779 

partial-walk-GAT 0.613628 5924.79 

base-GCN 0.54628 3137 

lap-GCN 0.597863 4429.61 

base-GIN 0.588791 3192 

walk-GIN 0.68621 4559.98 

base-GatedGCN 0.547136 8486.34 

lap-GatedGCN 0.599499 18008.5 

Table 3. baseline vs. best model on Peptides-func 



 Princeton Shape Benchmark 

Model Metric(mAP) Time 

base-SAN 0.491718 604.534 

lap-SAN 0.69522 303.984 

base-GAT 0.26137 550.336 

partial-lap-GAT 0.415871 311.685 

base-GCN 0.226104 257.307 

lap-GCN 0.39457 255.812 

base-GIN 0.322955 482.445 

lap-GIN 0.473845 263.543 

base-GatedGCN 0.244856 967.595 

lap-GatedGCN 0.348001 1509.78 

Table 4. baseline vs. best model on PSB 

 

3.2 Run Time Efficiencies 

As previously mentioned, the transformer-based approaches we explored include attention 

mechanisms, positional encodings, and edge creation. We found that incorporating these 

methods into the GNN pipeline resulted in significant improvements in accuracy compared to 

the baseline models. To address the trade-offs between improvements and the computational 

complexity, we evaluated the performance of the transformer-based approaches based on 

their training time and eventual metrics.  



In figures below, we presented a contrast between our transformer-based methods and the 

originally unchanged model which we would call them baseline. While the actual efficiency 

varied depending on the specific dataset and the particular model type, in general we could 

summarize that the set of transformers which best improves the models do not simultaneously 

result in a significantly unacceptable run-time increase.  

 

 

Figure 1-1. Metric performance vs. run-time efficiency on Pascal-VOC-SP 

  



Figure 1-2. Joint model efficiencies on Pascal 

 

Figure 2-1. Metric performance vs. run-time efficiency on Peptides-func 

 

Figure 2-2. Joint model efficiencies on Peptides-func 



 

Figure 3-1. Metric performance vs. run-time efficiency on Princeton Shape Benchmark 

 

Figure 2-2. Joint model efficiencies on PSB 

 

It's worth noting that the relative improvement of model performance on the Pascal-VOC 

dataset is considerably lower than on the Peptides-func dataset. This may be due to 

differences in the characteristics of the graphs and structures. Additionally, our modified 



partial attention mechanism and positional encoding yields a negative impact on the Pascal-

VOC dataset for SAN models, though the edge creation contribute to a positive effect. The 

reason for such odds is not clear at the current stage, and further investigations are required to 

conclude a plausible reason beyond dataset specificity. 

 

4 CONCLUSION 

In conclusion, we have explored the effectiveness of various transformer-based approaches in 

improving the performance of graph neural networks. Our findings suggest that incorporating 

transformer-based approaches can lead to more efficient and scalable GNN models that can 

effectively capture long-range interactions in larger graphs. Our result shows that the addition 

of partial graph attention can significantly increase the model performance more than 

positional encoding and edge creation does. Combining positional encoding and/or edge 

creation with attention can further enhance the performance by capturing both local and 

global structural information. Moreover, the transformer-based approaches significantly 

reduce the training time required to achieve state-of-the-art performance. Future research 

could explore on the generalization capabilities of transformer-based GNNs to new and 

unseen graphs. 

  



APPENDIX 

model_type metric model_type metric model_type metric 

psb-lap-SAN 0.6952196 pascal-edges-

SAN 0.333113 

peptides-edge-

walk-SAN 0.781493 

psb-edge-lap-SAN 0.6926008 pascal-base-

SAN 0.31998 

peptides-lap-

SAN 0.774999 

psb-walk-SAN 0.6653228 pascal-lap-

SAN 0.306362 

peptides-walk-

SAN 0.773616 

psb-edge-SAN 0.5145369 pascal-edge-

lap-SAN 0.291276 

peptides-edge-

lap-SAN 0.764344 

psb-edge-walk-SAN 0.4964911 pascal-walk-

SAN 0.27928 

peptides-base-

SAN 0.713322 

psb-base-SAN 0.4917182 pascal-edge-

walk-SAN 0.260857 

peptides-walk-

GIN 0.68621 

psb-lap-GIN 0.4738446 pascal-edge-

GAT 0.215543 

peptides-

edges-SAN 0.680472 

psb-edge-lap-GIN 0.461029 pascal-edge-

walk-GAT 0.212819 

peptides-lap-

GIN 0.673308 

psb-walk-GAT 0.4161945 pascal-base-

GAT 0.210278 

peptides-edge-

lap-GIN 0.671955 

psb-lap-GAT 0.4158707 pascal-walk-

GAT 0.204051 

peptides-edge-

walk-GIN 0.671453 

psb-walk-GCN 0.4042956 pascal-lap-

GAT 0.157617 

peptides-walk-

GAT 0.613628 

psb-edge-walk-GCN 0.4036116 pascal-edge-

lap-GAT 0.154941 

peptides-lap-

GatedGCN 0.599499 

psb-lap-GCN 0.3945698 pascal-edge-

lap-GIN 0.117174 

peptides-edge-

walk-GAT 0.598884 

psb-edge-walk-GIN 0.3740256 pascal-walk-

GIN 0.116813 

peptides-lap-

GCN 0.597863 

psb-walk-GIN 0.3638086 pascal-lap-

GIN 0.11533 

peptides-walk-

GatedGCN 0.59613 

psb-edge-lap-GCN 0.3600521 pascal-edge-

walk-GIN 0.113744 

peptides-base-

GIN 0.588791 

psb-edge-walk-GAT 0.3484621 pascal-edge-

GIN 0.107296 

peptides-edge-

lap-GAT 0.588026 

psb-lap-GatedGCN 0.3480012 pascal-edge-

lap-

GatedGCN 0.105592 

peptides-lap-

GAT 0.58162 

psb-lap-partial-GAT 0.3459151 pascal-base-

GIN 0.105413 

peptides-edge-

walk-GCN 0.577752 

psb-edge-lap-GatedGCN 0.344931 pascal-lap-

GatedGCN 0.103007 

peptides-

edges-GCN 0.572586 

psb-edge-walk-GatedGCN 0.3344378 pascal-edge-

walk-

GatedGCN 0.100233 

peptides-edge-

GIN 0.568688 

psb-edge-lap-GAT 0.3320493 pascal-base-

GatedGCN 0.099813 

peptides-edge-

lap-GatedGCN 0.568199 

psb-base-GIN 0.3229548 pascal-walk-

GatedGCN 0.095798 

peptides-edge-

GAT 0.567376 

psb-edge-lap-partial-GAT 0.3198476 pascal-edge-

GatedGCN 0.087692 

peptides-base-

GAT 0.567336 



psb-walk-partial-GAT 0.3050942 pascal-edges-

GCN 0.081265 

peptides-walk-

GCN 0.566612 

psb-edge-walk-partial-GAT 0.2983456 pascal-lap-

GCN 0.074416 

peptides-edge-

GatedGCN 0.566249 

psb-edge-GIN 0.2618942 pascal-walk-

GCN 0.074002 

peptides-edge-

lap-GCN 0.547736 

psb-base-GAT 0.26137 pascal-edge-

lap-GCN 0.07195 

peptides-base-

GatedGCN 0.547136 

psb-base-GatedGCN 0.2448564 pascal-edge-

walk-GCN 0.071276 

peptides-base-

GCN 0.54628 

psb-edge-GAT 0.2312569 

pascal-base-

GCN 0.071075 

peptides-edge-

lap-partial-

GAT 0.525215 

psb-base-GCN 0.2261042 

pascal-walk-

partial-GAT 0.04805 

peptides-edge-

walk-partial-

GAT 0.519267 

psb-edges-GCN 0.2182385 pascal-partial-

GAT 0.047904 

peptides-walk-

partial-GAT 0.518407 

psb-edge-partial-GAT 0.2009716 pascal-edge-

lap-partial-

GAT 0.047881 

peptides-lap-

partial-GAT 0.513495 

psb-partial-GAT 0.1967177 

pascal-lap-

partial-GAT 0.04785 

peptides-edge-

walk-

GatedGCN 0.501384 

psb-edges-GatedGCN 0.1858331 pascal-edge-

walk-partial-

GAT 0.047789 

peptides-

partial-GAT 0.487976 

psb-addedges-GatedGCN 0.1858331 pascal-edge-

partial-GAT 0.047615 

peptides-edge-

partial-GAT 0.475301 

A1. Full results from traversing different combinations of transformer-based techniques. 

  



REFERENCES 

Alon, Uri, and Eran Yahav. On the bottleneck of graph neural networks and its practical 

implications. arXiv preprint arXiv:2006.05205, 2020. 

Dwivedi, Vijay Prakash, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh 

Tuan Luu, and Dominique Beaini. Long range graph benchmark. arXiv preprint 

arXiv:2206.08164, 2022. 

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional 

networks. arXiv preprint arXiv:1609.02907, 2016. 

Kreuzer, Devin and Beaini, Dominique and Hamilton, William L. and Létourneau, Vincent 

and Tossou, Prudencio., Rethinking Graph Transformers with Spectral Attention. arXiv 

preprint arXiv: 2106.03893, 2021. 

Li, Yujia, et al. "Gated graph sequence neural networks." arXiv preprint 

arXiv:1511.05493 ,2015. 

Oono, K. and Suzuki, T. Graph neural networks exponentially lose expressive power for node 

classification. arXiv preprint cs.LG/1905.10947, 2019. 

Shilane, Philip, et al. "The princeton shape benchmark." Proceedings Shape Modeling 

Applications, 2004.. IEEE, 2004. 

Xu, Keyulu and Hu, Weihua and Leskovec, Jure and Jegelka, Stefanie. How Powerful are 

Graph Neural Networks? arXiv preprint arXiv: 1810.00826, 2018. 

 


